Carbon source-sink limitations differ between two species with contrasting growth strategies.

نویسندگان

  • Angela C Burnett
  • Alistair Rogers
  • Mark Rees
  • Colin P Osborne
چکیده

Understanding how carbon source and sink strengths limit plant growth is a critical knowledge gap that hinders efforts to maximize crop yield. We investigated how differences in growth rate arise from source-sink limitations, using a model system comparing a fast-growing domesticated annual barley (Hordeum vulgare cv. NFC Tipple) with a slow-growing wild perennial relative (Hordeum bulbosum). Source strength was manipulated by growing plants at sub-ambient and elevated CO2 concentrations ([CO2 ]). Limitations on vegetative growth imposed by source and sink were diagnosed by measuring relative growth rate, developmental plasticity, photosynthesis and major carbon and nitrogen metabolite pools. Growth was sink limited in the annual but source limited in the perennial. RGR and carbon acquisition were higher in the annual, but photosynthesis responded weakly to elevated [CO2 ] indicating that source strength was near maximal at current [CO2 ]. In contrast, photosynthetic rate and sink development responded strongly to elevated [CO2 ] in the perennial, indicating significant source limitation. Sink limitation was avoided in the perennial by high sink plasticity: a marked increase in tillering and root:shoot ratio at elevated [CO2 ], and lower non-structural carbohydrate accumulation. Alleviating sink limitation during vegetative development could be important for maximizing growth of elite cereals under future elevated [CO2 ].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Plant sink-source relationships and carbon isotopic labeling techniques . Taher Barzegar* and Fatemhe Nekounam

The concept of source and sink strength is presently well-recognized and accepted by the scientific community as a pertinent approach describing the mechanisms of carbohydrate partitioning into the different and competing organs at a whole plant or canopy scales. Sink–source relationships have a clear role in the size of sink organs. Besides the effect on organ size, sink/source ratio might also...

متن کامل

Multiple feedbacks between chloroplast and whole plant in the context of plant adaptation and acclimation to the environment.

This review focuses on feedback pathways that serve to match plant energy acquisition with plant energy utilization, and thereby aid in the optimization of chloroplast and whole-plant function in a given environment. First, the role of source-sink signalling in adjusting photosynthetic capacity (light harvesting, photochemistry and carbon fixation) to meet whole-plant carbohydrate demand is bri...

متن کامل

Modeling Tree Growth Taking into Account Carbon Source and Sink Limitations

Increasing CO2 concentrations are strongly controlled by the behavior of established forests, which are believed to be a major current sink of atmospheric CO2. There are many models which predict forest responses to environmental changes but they are almost exclusively carbon source (i.e., photosynthesis) driven. Here we present a model for an individual tree that takes into account the intrins...

متن کامل

Future forest aboveground carbon dynamics in the central United States: the importance of forest demographic processes

The Central Hardwood Forest (CHF) in the United States is currently a major carbon sink, there are uncertainties in how long the current carbon sink will persist and if the CHF will eventually become a carbon source. We used a multi-model ensemble to investigate aboveground carbon density of the CHF from 2010 to 2300 under current climate. Simulations were done using one representative model fo...

متن کامل

Development of a sink-source interaction model for the growth of short-rotation coppice willow and in silico exploration of genotype×environment effects.

Identifying key performance traits is essential for elucidating crop growth processes and breeding. In Salix spp., genotypic diversity is being exploited to tailor new varieties to overcome environmental yield constraints. Process-based models can assist these efforts by identifying key parameters of yield formation for different genotype×environment (G×E) combinations. Here, four commercial wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant, cell & environment

دوره 39 11  شماره 

صفحات  -

تاریخ انتشار 2016